Earth Sciences Division (ESD) Department of Energy (DOE) Lawrence Berkeley National Laboratory (LBNL)

Gregory Newman's Publications

  1. Newman, G. A., Wannamaker, P. E., and Hohmann, G. W., 1985, On the detectability of crustal magma chambers using the magnetotelluric method: Geophysics, 50, 1136-1143.
  2. Anderson, W. L., and Newman, G. A., 1985, An album of three-dimensional transient electromagnetic responses for the central-induction loop configuration: U.S. Geol. Sur. Open-File Rept. 85-745.
  3. Newman, G. A., Hohmann, G. W., and Anderson, W. L., 1986, Transient electromagnetic response of a three 51, 1608
  4. Gunderson, B. M., Newman, G. A., and Hohmann, G. W., 1986, Three-dimensional transient electromagnetic responses for the grounded wire source: Geophysics, 51, 2117-2130.
  5. Newman, G. A., Anderson, W. L., and Hohmann, G. W., 1987, Interpretation of three dimensional transient electromagnetic soundings for the central loop configuration: Geophys. J. R. astr. Soc., 89, 889-914.
  6. Newman, G. A., and Hohmann, G. W., 1988, Transient electromagnetic responses of high contrast prisms in a layered earth: Geophysics, 53, 691-706.
  7. Newman, G. A., Anderson, W. L., and Hohmann, G. W., 1989, Electromagnetic borehole responses of three dimensional bodies in a conductive host: Geophysics, 54, 598-608.
  8. Newman, G. A., 1989, Deep transient electromagnetic soundings with a grounded source over near surface conductors: Geophysical Journal, 98, 587-601.
  9. Flis, M. F., Newman, G. A., and Hohmann, G. W., 1989, Induced polarization effects in time-domain electromagnetic measurements: Geophysics, 54, 514-523.
  10. Hohmann, G. W., and Newman, G. A., 1990, Transient electromagnetic responses of surficial, polarizable patches: Geophysics, 55, 1098-1100.
  11. Newman, G. A., 1994, A study of downhole electromagnetic sources for mapping enhanced oil recovery processes: Geophysics, 59, 534-545.
  12. Newman, G. A., 1995, Cross well electromagnetic inversion using integral and differential equations: Geophysics, 60, 899-911.
  13. Newman, G. A., and Alumbaugh, D. L., 1995, Frequency domain modeling of airborne electromagnetic responses using staggered finite differences: Geophysical Prospecting, 43, 1021-1042.
  14. Peltoniemi M., Bars R. and Newman G. A., 1996, Numerical modeling of airborne electromagnetic anomalies originating from low-conductivity 3D bodies: Geophysical Prospecting, 44, 55-69.
  15. Alumbaugh, D. L. , Newman, G. A., Prevost, L., and Shadid, J.N., 1996, Three dimensional, wideband electromagnetic modeling on massively parallel computers; Radio Science, 31, 1-23.
  16. Newman G. A. and Alumbaugh, D. L., 1996, Three-dimensional electromagnetic modeling and inversion of massively parallel computers: Sandia Report, Sand96-0582.

  17. Newman, G. A., and Alumbaugh, D. L., 1997, 3-D massively parallel electromagnetic inversion -- Part I. Theory; Geophysical Journal International, 128, 345-354.
  18. Alumbaugh, D. L., and Newman, G. A., 1997, 3-D massively parallel electromagnetic inversion -- Part II. Analysis of a crosswell experiment: Geophysical Journal International, 128, 355-363
  19. Avdeev, D., Kuvshinov, A. V., Pankratov, O. V., and Newman G. A., 1997, High performance three-dimensional electromagnetic modeling using a modified Neumann series. Wide-band numerical solution and examples: Journal of Geomagnetism and Geoelectricity, 49, 1519-1539.
  20. Avdeev, D., Kuvshinov, A. V., Pankratov, O. V., and Newman G. A., 1998, Three-dimensional frequency-domain modeling of airborne electromagnetic responses: Exploration Geophysics, 29, 1-9.
  21. Newman, G.A., and Alumbaugh, D.A., 1999, 3-D electromagnetic modeling and inversion on massively parallel computers, in Oristaglio, M.N., and Spies, B.R., ed., Three-Dimensional Electromagnetics: Society of Exploration Geophysicists, Geophysical Developments No. 7, Tulsa OK, 299-321.
  22. Newman G. A. and Alumbaugh D. L., 2000, Three-dimensional magnetotelluric inversion using non-linear conjugate gradients: Geophysical Journal International, 140, 410-424.
  23. Alumbaugh D. L. and Newman G. A., 2000, Image Appraisal for 2D and 3D Electromagnetic Inversion: Geophysics, 65, 1455-1467.
  24. Newman G. A., and Hoversten G. M., 2000, Solution strategies for 2D and 3D electromagnetic inverse problems: Inverse Problems, 16, 1357-1375.
  25. Zhang Z., Routh P. S., Oldenburg D. W., Alumbaugh D. L., and Newman G. A., 2000, Reconstruction of 1-D conductivity from dual-loop EM data: Geophysics, 65, 492-501.
  26. Hoversten. G. M., Newman G. A., Morrison H. F., Gasperikova, E. and Berg John-Inge, 2001, Reservoir characterization using crosswell EM inversion: A feasibility study for the Snorre Field, North Sea: Geophysics, 66, 1177-1189.
  27. Badea, E.A., Everett, M.E., Newman, G.A. and Biro, O., 2001, Finite-element analysis of controlled-source electromagnetic induction using Coulomb-gauged potentials: Geophysics, 66, 786-799.
  28. Weiss, C. J. and Newman, G. A., 2002, Electromagnetic induction in a fully 3-D anisotropic earth: Geophysics, 67, 1104-1114.
  29. Newman, G. A., Hoversten G. M., and Alumbaugh, D. L., 2002, 3D magnetotulleric modeling and inversion: applications to sub-salt imaging: in Three-Dimensional Electromagnetics, Proceedings of the Second International Symposium, Chapter 8, 127-152, Elsevier.
  30. Newman, G.A. and Alumbaugh, D.L., 2002, Three-dimensional induction logging problems, Part 2: A finite-difference solution: Geophysics, 67, 484-491.
  31. Avdeev, D.B., Kuvshinov, A.V., Pankratov, O.V. and Newman, G.A., 2002, Three-dimensional induction logging problems, Part I: An integral equation solution and model comparisons: Geophysics, 67, 413-426.
  32. Weiss, C.J. and Newman, G. A., 2003, Electromagnetic induction in a generalized 3D anisotropic earth, Part 2: The LIN preconditioner: Geophysics, 68, 922-930.
  33. Newman, G. A., Recher, S., Tezkan, B. and Neubauer, F. M., 2003, 3D inversion of a scalar radio magnetotelluric field data set: Geophysics, 68, 782-790.
  34. Commer, M., and Newman, G., 2004, A parallel finite-difference approach for three-dimensional transient electromagnetic modeling with galvanic sources: Geophysics, 69, 1192-1202.
  35. Newman, G. A., and Boggs, P. T., 2004, Solution accelerators for large-scale three-dimensional electromagnetic inverse problems: Inverse Problems, 20, S151-S170.
  36. Newman, G. A., and Commer, M., 2005, New advances in transient electromagnetic inversion: Geophysical Journal International, 160, 5-32.
  37. Hoversten, G. M., Newman, G. A., Geier, N., Flanagan, G., 2006, 3D modeling of a deepwater EM exploration survey: Geophysics, 71, No. 5, G239-G248.
  38. Commer M., and Newman G. A., 2006, An accelerated time domain finite difference simulation scheme for three-dimensional transient electromagnetic modeling using geometric multigrid concepts: Radio Science, 41, 1-15.
  39. Hoversten, G. M., Cassassuce, F., Gasperikova, E., Newman, G. A., Chen, J., Rubin Y., Hou, Z., Vasco D., 2006, Direct reservoir parameter estimation using joint inversion of marine seismic AVA and CSEM data, Geophysics, 71, No. 3, C1-C13.
  40. Commer, M., Newman G. A., Carazzone, J. J., Dickens, T. A., Green, K. A., Wahrmund, L. A., and Willen, D. E., 2008, Massively-parallel electrical-conductivity imaging of hydrocarbons on the Blue Gene/L supercomputer: IBM Journal of Research and Development, 52, No. ½.
  41. Commer, M. and Newman G. A., 2008, New advances in controlled source electromagnetic inversion: Geophysical Journal International, 172, 513-535.
  42. Newman, G. A., Hoversten G. M., Wannamaker P. E., and Gasperikova, E., 2008, Three-dimensional Magnetotelluric Characterization of the Coso Geothermal Field; Geothermics, 37, 369-399.
  43. Commer, M. and Newman G. A., 2009, Three-Dimensional Controlled-Source Electromagnetic and Magnetotelluric Joint Inversion: Geophysical Journal International, 178, 1305-1316.
  44. Newman, G. A. and Commer M., 2009, Massively Parallel Electrical Conductivity Imaging of the Subsurface: Journal of Physics: Conference Series 180, 012063.
  45. Newman, G. A., Commer M., and Carazzone J. J., 2009, Imaging CSEM Data in the Presence of Electrical Anisotropy: Geophysics, In Press.

 

↑ Back to top