Earth Sciences Division (ESD) Department of Energy (DOE) Lawrence Berkeley National Laboratory (LBNL)

Earth Sciences Division Staff: Hoi-Ying N. Holman

Hoi-ying Holman

Hoi-Ying N. Holman

Director of Berkeley Synchrotron Infrared Structural Biology

Head, Chemical Ecology

Ecology Department


Phone: 510-486-7094

Fax: 510-486-7152


Biographical Summary

1 Cyclotron Road, Maiilstop:  70A-3317
Berkeley, CA  94720
Ph.D. Environmental Chemistry and Chemical Engineering, University of California, Berkeley, USA, 1986; Postdoctoral fellow, UC Toxic Substance Research and Teaching Program, Lawrence Berkeley National Laboratory, 1986-1988; Scientist, Lawrence Berkeley National Laboratory, 1989-1990; Staff Scientist and Head of Environmental Measurement Laboratory, Lawrence Berkeley National Laboratory, 1990-1994; Principal Investigator & Director, 1991-present; Director, Berkeley Synchrotron Infrared Structural Biology Program, 2010-present.


  • Ph.D. Environmental Chemistry and Chemical Engineering, University of California, Berkeley, USA, 1986;
  • Postdoctoral fellow, UC Toxic Substance Research and Teaching Program, Lawrence Berkeley National Laboratory, 1986-1988.

Honors and Awards

  • 2010, David A. Shirley Award for Outstanding Scientific Achievement at the Advanced Light Source
  • 1998 - Lawrence Berkeley National Laboratory Outstanding Scientific Performance Award
  • 2005 - Lawrence Berkeley National Laboratory Technology Transfer Award

Professional Experience

  • 2010-present - Director, Berekeley Synchrotron Infrared Structural Biology, LBNL.
  • 2008-present - Head, Chemical Ecology, LBNL.
  • 1995-present - Principal Investigator; Staff Scientist/Chemist, LBNL. Utilize an interdisciplinary approach to develop real-time bioanalytical and imaging techniques for measuring at a molecular level the functions and structures of a living cells and tissues at a micron-size spatial resolution.
  • 1996-1997 - University of California Biotechnology Program Review Committee. Reviewed proposed research/teaching program which would benefit the development of biotechnology in California.
  • 1990-1994 - Staff Scientist/Chemist: Head of Environmental Measurement Lab; Group Leader of Analytical Organic Chemistry. 
  • 1989-1990 - Scientist, LBNL. Established LBNL’s Environmental Measurement Lab.

Research Interests

Chemical and Functional Dynamics in Living Cells — Synchrotron Infrared Spectromicroscopy integrated with perturbation experiments is used to investigate metabolic and functional changes in prokaryotes, especially those important in the cycling of elements; hyperspectral imaging of living microbial systems.

Our group uses and develops advanced synchrotron infrared spectroscopic methods to study complex microbial cycling of elements such as bioremediation and plant cell-wall deconstruction and carbon sequestration.

In microbial cycling of elements we aim to define the principle underlying bacteria’s remarkable chemical ability to survive extreme environments, and to use this principle to manage these bacteria for remediate heavy metal polluted sites for converting biomass to fuels effectively. Sulfate reducing bacteria (SRB), for example, are obligate anaerobes and their ability to detoxify radionuclides and metals are regulated to external conditions, such as oxygen levels, and one of the key components of is regularly undergoing adaptation and repair. We plan to understand SRB’s ability at the molecular level by combining high-resolution synchrotron infrared spectromicroscopy with system biology through collaboration with colleagues at the Virtual Institute for Microbial Stress and Survival (VIMSS). We have recently shown, using time difference synchrotron infrared spectromicroscopy, that well-orchestrated chemical events exist in SRB enabling them to transiently survive the most hostile condition − air. We are exploring the implications of these chemical events for bioremediation of radionuclides and metals.

The abundance of cellulose in stover and the diversity of microbial cellulosomes with significant cellulolytic effects yield a rich range of properties for bioenergy production. We aim to explore and understand these properties with a particular current emphasis on cellulose hydrolysis and byproduct toxicity on microbial cycling of carbons under transient and highly heterogeneous conditions via microfluidic synchrotron infrared spectromicroscopy and theoretical modeling.

Synchrotron infrared spectromicroscopy is an emerging technology with many potential ways to enhance its resolution, sharpen the information content, and define microbial reaction pathways. My group continues to develop new infrared spectroscopy methods and the computational tools for their analysis.

Patents and Patent Pending

  • Holman, H.-Y.N. and R. Miles. Virtual Window and Thin-Liquid-Film Apparatus for Continuous Fluorescence and Infrared Spectroscopy Imaging of Living Cells and Tissues, IB-2201, 2009. 
  • Holman, H.-Y. N.  Spectroscopic evaluation of atherosclerotic plaques, IB-1867P, 2009.
  • Holman, H.-Y. N. Gastrointestinal mimetic device, U.S. Patent No. 6,040,188, 2000.