Earth Sciences Division (ESD) Department of Energy (DOE) Lawrence Berkeley National Laboratory (LBNL)

James Berryman's Publications

Jump to

2010

  1. JGB and S. Nakagawa, “Inverse problem in anisotropic poroelasticity: Drained constants from undrained ultrasound measurements,” J. Acoust. Soc. Am., to appear 3-4/2010.

2009

  1. JGB, “Poroelastic measurement schemes resulting in complete data sets for granular and other anisotropic porous media,” Int. J. Engng. Sci., online Dec. 16, 2009.
  2. JGB and A. Aydin, “Quasi-static analysis of elastic behavior for some higher density crack systems,” IJ Num. Anal. Meth. Geomech., online Dec. 15, 2009.
  3. Attila Aydin and JGB, “Analysis of growth of strike-slip faults using effective medium theory,” J. Struct. Geol., online Nov. 27, 2009.
  4. S. R. Pride and JGB, “Goddard rattler-jamming mechanism for quantifying pressure dependence of elastic moduli of grain packs,” Acta Mech. 205 (1-4), 185-196 (2009).
  5. JGB, “Frequency dependent thermal expansion in binary viscoelastic composites,” Mech. Mat. 41 (4), 463-480 (2009).
  6. JGB, “Aligned vertical fractures, HTI reservoir symmetry and seismic anisotropy parameters for polar media,” Geophys. Prosp. 57 (2), 193-208 (2009).
  7. H. H. Liu, J. Rutqvist, and JGB, “On the relationship between stress and elastic strain for fractured rock,” Int. J. Rock Mech. 46 (2), 289-296 (2009).

2008

  1. JGB, “Elastic and transport properties in polycrystals of cracked grains: Cross-property relations and microstructure,” Int. J. Engng. Sci. 46 (6), 500-512 (2008).
  2. JGB, “Exact seismic velocities for transversely isotropic media and extended Thomsen formulas for stronger anisotropies,” Geophysics 73 (1), D1-D10 (2008).

↑ Back to top

2007

  1. Aligned vertical fractures, HTI symmetry, and Thomsen parameters, in Proceedings of the EAGE-SEG Workshop on Fractured Reservoirs: Integrating Geosciences for Fracturecd Reservoirs, Perugia, Italy, September 3--6, 2007. LBNL-63016, July, 2007.
  2. Seismic waves in rocks with fluids and fractures, Geophysical Journal International 171, 954--974. LBNL-62925, June, 2007.
  3. Simulations of dynamic crack propagation in brittle materials using nodal cohesive forces and continuum damage mechanics in the distinct element code LDEC, International Journal of Fracture 144, 131--147 (2007). LBNL-61404, August, 2006. (with G. Block, M. B. Rubin, and J. Morris)

↑ Back to top

2006

  1. JGB, “Seismic waves in rock with fluids and fractures,” Geophys. J. Int. 171 (2), 954-974 (2006).
  2. Random polycrystals of grains containing cracks: Model of quasistatic elastic behavior for fractured systems, Journal of Applied Physics 100, 113527 (2006). LBNL-61135, July 19, 2006. (with V. Grechka)
  3. Target characterization using decomposition of the time-reversal operator: Electromagnetic scattering from small ellipsoids, Inverse Problems 22, 2145--2163 (2006). (with D. H. Chambers)
  4. Measures of microstructure to improve estimates and bounds on elastic constants and transport coefficients in heterogeneous media, Mechanics of Materials 38 (8--10), 732--747 (2006).
  5. Geomechanical analysis with rigorous error estimates for a double-porosity reservoir model, International Journal for Numerical and Analytical Methods in Geomechanics 30, 441--453 (2006; online: December 8, 2005)
  6. Effective medium theories for multicomponent poroelastic composites, ASCE Journal of Engineering Mechanics 132 (5), 519--531 (2006).
  7. Estimates and rigorous bounds on pore-fluid enhanced shear modulus in poroelastic media with hard and soft anisotropy, International Journal of Damage Mechanics 15 (2), 133--167 (2006).
↑ Back to top

2005

  1. Comparison of up-scaling methods in poroelasticity and its generalizations, ASCE Journal of Engineering Mechanics 131 (9), 928--936 (2005).
  2. Pore fluid effects on shear modulus in a model of heterogeneous rocks, reservoirs, and granular media, Journal of Geophysical Research 110 (B7), B07202 (online: July 20, 2005).
  3. Thermal conductivity of porous media, Applied Physics Letters 86, 032905 (2005; online: January 11, 2005).
  4. Poroelastic fluid effects on shear for rocks with soft anisotropy, Geophysical Journal International 161 (3), 881--890 (2005; online: May 5, 2005).
  5. Fluid effects on shear waves in finely layered porous media, Geophysics 70, N1--N15 (2005).
  6. Bounds and estimates for elastic constants of random polycrystals of laminates, International Journal of Solids and Structures 42, 3730--3743 (2005).
  7. Bounds and estimates for transport coefficients of random and porous media with high contrasts, Journal of Applied Physics 97, 063504 (2005).
  8. Dispersion of waves in porous cylinders with patchy saturarion: Formulation and torsional waves, Journal of the Acoustical Society of America 117, 1785--1795 (2005). (with S. R. Pride).
↑ Back to top

2004

  1. S. R. Pride, J. G. Berryman, and J. M. Harris, Seismic-wave attenuation due to wave induced flow, J. Geophys. Res. 109, B01201 (2004).
  2. Poroelastic shear modulus dependence on pore-fluid properties arising in a model of thin isotropic layers, Geophysical Journal International 157, 415--425 (2004).
  3. Bounds on elastic constants for random polycrystals of laminates, Journal of Applied Physics 96, 4281--4287 (2004).
  4. Analysis of the time-reversal operator for a small spherical scatterer in an electromagnetic field, IEEE Transactions on Antennas and Propagation 52, 1729--1738 (2004). (with D. H. Chambers) 
  5. Time-reversal analysis for scatterer characterization, Physical Review Letters 92, 023902 (2004). (with D. H. Chambers) Seismic attenuation due to wave-induced flow, Journal of Geophysical Research 109, B01201 (2004). (with S. R. Pride and J. M. Harris)
  6. Method for distinguishing multiple targets using time-reversal acoustics, US Patent No. 6,755,083 granted June 29, 2004.

Selected Pre-2004

  1. S. R. Pride and J. G. Berryman, Linear dynamics of double-porosity dual-permeablity materials. I. Governing equations and acoustic attenuation, Phys. Rev. E 68, 036603 (2003).
  2. J. G. Berryman and H. F. Wang, The elastic coefficients of double-porosity models for fluid transport in jointed rock, J. Geophys. Res. 100 (B12), 24611-24627 (1995).
  3. J. G. Berryman, Single-scattering approximations for coefficients in Biot’s equations of poroelasticity, J. Acoust. Soc. Am. 91, 551-571 (1992).
  4. J. G. Berryman, Effective stress for transport properties of inhomogeneous porous rock, J. Geophys. Res. 97, 17409-17424 (1992).
  5. J. G. Berryman and G. W. Milton, Exact results for generalized Gassmann’s equations in composite porous media with two constitutents, Geophysics 56, 1950-1960 (1991).
  6. J. G. Berryman, Random close packing of hard spheres and disks, Phys. Rev. A 27, 1053-1061 (1983).
  7. J. G. Berryman, Confirmation of Biot’s theory, Appl. Phys. Lett. 37, 382-384 (1980).

 

↑ Back to top