1. Hofmann, A.E., Bourg, I.C., DePaolo, D.J., 2012. Ion desolvation as a mechanism for kinetic isotope fractionation in aqueous systems, Proc. Natl. Acad. Sci. U.S.A. (doi: 10.1073/pnas.1208184109).
  2. Bourg, I.C., Steefel, C.I., 2012. Molecular dynamics simulations of water structure and diffusion in silica nanopores, J. Phys. Chem. C 116, 11556-11564.
  3. Nielsen, L.C., Bourg, I.C., Sposito, G., 2012. Predicting CO2-water interfacial tension under pressure and temperature conditions of geologic CO2 storage, Geochim. Cosmochim. Acta 81, 28-38.
  4. Bourg, I.C., Sposito, G., 2011. Ion exchange phenomena, In: Handbook of Soil Science, Properties and Processes 2nd ed. (Huang, P.M., Li, Y., Sumner, M.E., eds.), CRC Press, Boca Raton, Chapter 16.
  5. Bourg,  I.C., Sposito, G., 2011. Molecular dynamics simulations of the  electrical double layer on smectite surfaces contacting concentrated  mixed electrolyte (NaCl-CaCl2) solutions, J. Colloid Interface Sci. 360, 701-715.
  6. Kwon,  K.D., Refson, K., Bone, S., Qiao, R., Yang, W., Liu, Z., Sposito, G.,  2011. Magnetic ordering in mackinawite (tetragonal FeS): evidence for  strong itinerant spin fluctuations, Phys. Rev. B 83, 064402.
  7. Kwon, K.D., Refson, K., Sposito, G., 2010.  Surface complexation of Pb(II) by hexagonal birnessite nanoparticles. Geochim. Cosmochim. Acta 74, 6731-6740.
  8. Kwon,  K.D., Sposito, G., 2010.  Reactivity of biogenic manganese oxide for  metal sequestration and photochemistry: computational solid state  physics study. J. Miner. Soc. Korea 23, 161-170.
  9. Peña, J., Kwon, K.D., Refson, K., Bargar, J.R., Sposito, G., 2010. Mechanisms of nickel sorption by a bacteriogenic birnessite, Geochimica et Cosmochimica Acta 74, 3076-3089.
  10. Bourg,  I.C., Sposito, G., 2010. Connecting the molecular scale to the  continuum scale for diffusion processes in smectite-rich porous media. Environ. Sci. Technol. 44, 2085-2091.
  11. Bourg,  I.C., Richter, F.M., Christensen, J.N., Sposito, G., 2010. Isotopic  mass-dependence of alkali metal cation diffusion coefficients in water. Geochim. Cosmochim. Acta 74, 2249-2256.
  12. Kwon,  K.D., Refson, K., Sposito, G., 2009.  On the role of Mn(IV) vacancies  in the photoreductive dissolution of hexagonal birnessite. Geochim. Cosmochim. Acta 73, 4142-4150.
  13. Kwon, K.D., Refson, K., Sposito, G., 2009.  Zinc surface complexes on birnessite: A density functional theory study. Geochim. Cosmochim. Acta 73, 1273-1284.
  14. Kwon,  K.D., Refson, K., Sposito, G., 2008.  Defect-induced photoconductivity  in layered manganese oxides: A density functional theory study. Phys. Rev. Lett. 100, 146601.
  15. Bourg,  I.C., Sposito, G., 2008.  Isotopic fractionation of noble gases by  diffusion in liquid water: Molecular dynamics simulations and hydrologic  applications. Geochim. Cosmochim. Acta 72, 2237-2247.
  16. Bourg, I.C., Sposito, G., Bourg, A.C.M., 2008. Modeling the diffusion of Na+ in compacted water-saturated Na-bentonite as a function of pore water ionic strength. Appl. Geochem. 23, 3635-3641.
  17. Bourg,  I.C., Sposito, G., Bourg, A.C.M., 2007.  Modeling cation diffusion in  compacted water-saturated sodium bentonite at low ionic strength.  Environ. Sci. Technol. 41, 8118-8122.
  18. Bourg, I.C., Sposito, G., Bourg, A.C.M., 2007.  Modeling the acid-base surface chemistry of montmorillonite. J. Colloid Interface Sci. 312, 297-310.
  19. Bourg,  I.C., Sposito, G., 2007.  Molecular dynamics simulations of kinetic  isotope fractionation during the diffusion of ionic species in liquid  water. Geochim. Cosmochim. Acta 71, 5583-5589.
  20. Sutton, R., Sposito, G., 2006.  Molecular simulation of humic substance-Ca-montmorillonite complexes. Geochim. Cosmochim. Acta 70, 3566-3581.
  21. Bourg, I.C., Sposito, G., Bourg, A.C.M., 2006.  Tracer diffusion in compacted water-saturated bentonite. Clays Clay Miner. 54, 363-374.
  22. Sutton, R., Sposito, G., 2005. Molecular structure in soil humic substances: The new view. Environ. Sci. Technol. 39, 9009-9015.
  23. Sutton, R., Sposito, G., Diallo, M.S., Schulten, H.R., 2005. Molecular simulation of a model of dissolved organic matter. Environ. Toxicol. Chem. 24, 1902-1911.
  24. Sposito,  G., Park, S.-H., Refson, K., 2005. NERSC supercomputers are being used  to predict the atomic structures of environmental nanoparticles that  play important roles in global geochemical cycles.  DOE Greenbook: Needs  and Directions in High Performance Computing for the Office of Science,  U.S. Department of Energy, Office of Science, June 2005 (PPPL-4090),  pp. 30-31.
  25. Park, S.-H., Sposito, G., 2004. Molecular modeling of clay structure and surface chemistry.  In S.A. Auerbach, K.A. Carrado, and P.K. Dutta (eds.), Handbook of Layered Materials Science & Technology, Chap. 2.  Marcel Dekker, New York.
  26. Refson, K., Park, S.-H., Sposito, G., 2003. Ab initio computational crystallography of 2:1 clay minerals: 1. Pyrophyllite-1Tc. J. Phys. Chem. B 107, 13376-13383.
  27. Park,  S.H., Sposito, G., 2003. Do montmorillonite surfaces promote methane  hydrate formation?: Monte Carlo and molecular dynamics simulations. J. Phys. Chem. B 107, 2281-2290.
  28. Sutton, R., Sposito, G., 2002. Animated molecular dynamics simulations of hydrated caesium-smectite interlayers. Geochem. Trans. 3(9), 73-80.
  29. Park, S.-H., Sposito, G., 2002. Structure of water adsorbed on a mica surface. Phys. Rev. Lett. 89, 85501.
  30. Park,  S.-H., Sposito, G., Sutton, R., Greathouse J., 2001. Density functional  theory calculations on the structures of 2:1 clay materials.  Earth  Sciences Division 2000-2001 Annual Report, Lawrence Berkeley National Laboratory, p. 22.
  31. Sutton, R., Sposito, G., 2001. Molecular simulation of interlayer structure and dynamics in 12.4 Å Cs-smectite hydrates. J. Colloid Interface Sci. 237, 174-184.
  32. Greathouse,  J.A., Refson, K., Sposito, G., 2000.  Molecular dynamics simulation of  water mobility in magnesium-smectite hydrates. J. Am. Chem. Soc. 122, 11459-11464.
  33. Park,  S.-H., Sposito, G., 2000. Monte Carlo simulation of total radial  distribution functions for interlayer water in Li-, Na-, and  K-montmorillonite hydrates. J. Phys. Chem. B 104, 4642-4648.